Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vickie McKee, ${ }^{\text {a* }}$ Grace G, Morgan ${ }^{\text {b }}$ and Jane Nelson ${ }^{\text {a }}$

${ }^{\text {a }}$ Chemistry Department, Loughborough University, Loughborough, Leics LE11 3TU, England, and ${ }^{\mathbf{b}}$ School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland

Correspondence e-mail: v.mckee@Iboro.ac.uk

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.118$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tris[2-(2-nitrobenzylideneamino)ethyl]amine

The title imine podand, $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{6}$, is approximately planar, with the amine N atom lying on a threefold axis. $\pi-\pi$ Stacking of the nitrobenzene groups and significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present in the crystal structure.

Comment

Our long-standing interest in the chemistry of cryptands based on tris(aminoethyl)amine and related amines (see for example McKee et al., 2003; Nelson et al., 1998) has led us to synthesize a range of analogous podates in order to compare their properties with those of the related cryptand and cryptate systems.

In this paper we report the structure of tris[N-2-(nitrobenzylideneamino)ethyl]amine, (I), which was prepared by Schiff base condensation of 2-nitrobenzaldehyde with tris(aminoethyl)amine (tren). Compound (I) crystallizes in the trigonal space group $R \overline{3}$ and lies on a threefold axis (Fig. 1). The molecule overall is approximately planar [r.m.s. deviation of all non-H atoms from the mean plane is 0.264 (2) \AA]. This arrangement allows the π systems to stack parallel to the c axis (Fig. 2). The benzene ring comprising $\mathrm{C} 4-\mathrm{C} 9$ is inclined at $7.69(2)^{\circ}$ to its equivalent by symmetry operation $\left(\frac{2}{3}-y,-\frac{2}{3}+x\right.$ $-y, \frac{1}{3}+z$) and the centroid of the ring is 3.432 (1) \AA from the plane of the second ring; the ring centroids are 3.835 (2) \AA apart. The plane of the nitro group is inclined at $22.75(4)^{\circ}$ to the mean plane of the benzene ring.

A search of the CSD (Version 5.27; Allen, 2002; Fletcher et al., 1996) shows that, although many tris(aminoethyl)amine/ salicylate complexes have been investigated, few simple podands with other substituted benzaldehyde derivatives have been structurally characterized. The closest analogue in the literature is tris(N-4-nitrobenzylideneaminoethyl)amine (Glidewell et al., 2005). In that structure the three arms of the
\qquad

Figure 1
Perspective view of the structure (I); displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes (i) $1-y, x-y-1, z$; (ii) $2-x+y, 1-x, z$.]

Figure 2
Packing diagram viewed down the c axis and showing $\pi-\pi$ stacking. H atoms have been omitted for clarity.
molecule are independent and each has a different conformation. The molecule has a more 'closed' conformation, due to intramolecular $\pi-\pi$ interactions between two of the rings. There are also intermolecular $\pi-\pi$ interactions as well as one intramolecular, and one intermolecular, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Figure 3
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 12^{\mathrm{iii}}$ and symmetry-related hydrogen-bonds (shown dashed). [Symmetry code: (iii) $\frac{4}{3}-x,-\frac{1}{3}-y, \frac{2}{3}-z$.]

None of the podands reported previously have the planar geometry seen in the present compound. A likely reason for this unusual arrangement is that the position of the nitro group allows formation of a total of 12 intermolecular C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds per molecule which support the π stacking in the lattice (Table 1). Fig. 3 shows the $\mathrm{C} 12-$ H12 . . O12 ${ }^{\text {iii }}$ hydrogen bond along with the five symmetryrelated interactions involving a single molecule of (I). The central molecule is linked into three $R_{2}^{2}(16)$ rings (Etter et al., 1990) and lies slightly below the mean plane of the other three molecules. Similarly, Fig. 4 shows the $\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 11^{\text {iv }}$ hydrogen bond and symmetry-related interactions; in this case $R_{2}^{2}(34)$ rings result and the central molecule is above the plane of the three neighbours. The two arrays of molecules hydrogen bonded to the central molecule interact with each other by $\pi-$ π stacking, as shown in Fig. 2.

Experimental

Compound (I) was prepared by condensation of tris(2-aminoethyl)amine ($1.04 \mathrm{~g}, 7.1 \mathrm{mmol}$) and 2-nitrobenzaldehyde (3.17 g , $20.0 \mathrm{mmol})$ in ethanol $(50 \mathrm{ml})$. The solution was refluxed for 30 min and the product obtained as yellow crystals on reducing the volume (yield $3.73 \mathrm{~g}, 98 \%$). Analysis calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{6}$: C 59.4, H 5.0, N 18.0%; found C 59.2, H 4.9, N 18.0%.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{6}$
$M_{r}=545.56$ Trigonal, $R \overline{3}$ $a=20.765$ (1) \AA
$c=10.453$ (1) \AA
$V=3903.3(5) \AA^{3}$
$Z=6$

$$
\begin{aligned}
& D_{x}=1.393 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=0.10 \mathrm{~mm}^{-1}} \\
& T=123(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.55 \times 0.40 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens $P 4$ four-circle
1425 reflections with $I>2 \sigma(I)$
diffractometer
ω scans
Absorption correction: none
2518 measured reflections
1952 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.118$
$S=1.03$
1952 reflections
121 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12A $\cdots \mathrm{O} 1$ i $^{\text {iii }}$	0.99	2.60	$3.592(2)$	178
C18-H18 $\cdots 11^{\text {iv }}$	0.95	2.51	$3.147(2)$	124

Symmetry codes: (iii) $-x+\frac{4}{3},-y-\frac{1}{3},-z+\frac{2}{3}$; (iv) $x-y-\frac{1}{3}, x-\frac{2}{3},-z+\frac{1}{3}$.
H atoms were placed at calculated positions and refined using a riding model. The constrained distances were 0.95 and $0.99 \AA$ for aryl and methylene, respectively. They were refined with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

We thank the Leverhulme Foundation and Unilever R\&D for support and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.

Figure 4
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 11^{\text {iv }}$ and symmetry-related hydrogen-bonds (shown dashed). [Symmetry code: (iv) $x-y-\frac{1}{3}, x-\frac{2}{3}, \frac{1}{3}-z$.]

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2005). Acta Cryst. C61, o75-o77.
McKee, V., Nelson, J. \& Town, R. M. (2003). Chem. Soc. Rev. 32, 309-325.
Nelson, J., McKee, V. \& Morgan, G. (1998). Prog. Inorg. Chem. 47, 167-316. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

