Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Vickie McKee,^a* Grace G, Morgan^b and Jane Nelson^a

^aChemistry Department, Loughborough University, Loughborough, Leics LE11 3TU, England, and ^bSchool of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland

Correspondence e-mail: v.mckee@lboro.ac.uk

Key indicators

Single-crystal X-ray study T = 123 KMean σ (C–C) = 0.003 Å R factor = 0.047 wR factor = 0.118 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title imine podand, $C_{27}H_{27}N_7O_6$, is approximately planar, with the amine N atom lying on a threefold axis. π - π Stacking of the nitrobenzene groups and significant C-H···O hydrogen bonds are present in the crystal structure.

Tris[2-(2-nitrobenzylideneamino)ethyl]amine

Received 1 August 2006 Accepted 3 August 2006

Comment

Our long-standing interest in the chemistry of cryptands based on tris(aminoethyl)amine and related amines (see for example McKee *et al.*, 2003; Nelson *et al.*, 1998) has led us to synthesize a range of analogous podates in order to compare their properties with those of the related cryptand and cryptate systems.

In this paper we report the structure of tris[*N*-2-(nitrobenzylideneamino)ethyl]amine, (I), which was prepared by Schiff base condensation of 2-nitrobenzaldehyde with tris-(aminoethyl)amine (tren). Compound (I) crystallizes in the trigonal space group $R\overline{3}$ and lies on a threefold axis (Fig. 1). The molecule overall is approximately planar [r.m.s. deviation of all non-H atoms from the mean plane is 0.264 (2) Å]. This arrangement allows the π systems to stack parallel to the *c* axis (Fig. 2). The benzene ring comprising C4–C9 is inclined at 7.69 (2)° to its equivalent by symmetry operation $(\frac{2}{3} - y, -\frac{2}{3} + x - y, \frac{1}{3} + z)$ and the centroid of the ring is 3.432 (1) Å from the plane of the second ring; the ring centroids are 3.835 (2) Å apart. The plane of the nitro group is inclined at 22.75 (4)° to the mean plane of the benzene ring.

A search of the CSD (Version 5.27; Allen, 2002; Fletcher *et al.*, 1996) shows that, although many tris(aminoethyl)amine/ salicylate complexes have been investigated, few simple podands with other substituted benzaldehyde derivatives have been structurally characterized. The closest analogue in the literature is tris(*N*-4-nitrobenzylideneaminoethyl)amine (Glidewell *et al.*, 2005). In that structure the three arms of the

Figure 1

Perspective view of the structure (I); displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes (i) 1 - y, x - y - 1, z; (ii) 2 - x + y, 1 - x, z.]

Figure 2

Packing diagram viewed down the *c* axis and showing π - π stacking. H atoms have been omitted for clarity.

molecule are independent and each has a different conformation. The molecule has a more 'closed' conformation, due to intramolecular π - π interactions between two of the rings. There are also intermolecular π - π interactions as well as one intramolecular, and one intermolecular, C-H···O hydrogen bond.

Figure 3 C12-H12···O12ⁱⁱⁱ and symmetry-related hydrogen-bonds (shown dashed). [Symmetry code: (iii) $\frac{4}{3} - x$, $-\frac{1}{3} - y$, $\frac{2}{3} - z$.]

None of the podands reported previously have the planar geometry seen in the present compound. A likely reason for this unusual arrangement is that the position of the nitro group allows formation of a total of 12 intermolecular C-H···O hydrogen bonds per molecule which support the π stacking in the lattice (Table 1). Fig. 3 shows the C12-H12...O12ⁱⁱⁱ hydrogen bond along with the five symmetryrelated interactions involving a single molecule of (I). The central molecule is linked into three $R_2^2(16)$ rings (Etter *et al.*, 1990) and lies slightly below the mean plane of the other three molecules. Similarly, Fig. 4 shows the C18-H18...O11^{iv} hydrogen bond and symmetry-related interactions; in this case $R_2^2(34)$ rings result and the central molecule is above the plane of the three neighbours. The two arrays of molecules hydrogen bonded to the central molecule interact with each other by π - π stacking, as shown in Fig. 2.

Experimental

Compound (I) was prepared by condensation of tris(2-aminoethyl)amine (1.04 g, 7.1 mmol) and 2-nitrobenzaldehyde (3.17 g, 20.0 mmol) in ethanol (50 ml). The solution was refluxed for 30 min and the product obtained as yellow crystals on reducing the volume (yield 3.73 g, 98%). Analysis calculated for $C_{27}H_{27}N_7O_6$: C 59.4, H 5.0, N 18.0%; found C 59.2, H 4.9, N 18.0%.

Crystal data

 $\begin{array}{lll} C_{27}H_{27}N_7O_6 & D_x = 1.393 \ {\rm Mg} \ {\rm m}^{-3} \\ M_r = 545.56 & {\rm Mo} \ {\it K\alpha} \ {\rm radiation} \\ {\rm Trigonal}, \ {\it R}\overline{3} & \mu = 0.10 \ {\rm mm}^{-1} \\ a = 20.765 \ (1) \ {\rm \AA} & T = 123 \ (2) \ {\rm K} \\ c = 10.453 \ (1) \ {\rm \AA} & {\rm Block}, \ {\rm yellow} \\ V = 3903.3 \ (5) \ {\rm \AA}^3 & 0.55 \times 0.40 \times 0.30 \ {\rm mm} \\ Z = 6 \end{array}$

Data collection

Siemens P4 four-circle diffractometer ω scans Absorption correction: none 2518 measured reflections 1952 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.118$ S = 1.031952 reflections 121 parameters H-atom parameters constrained 1425 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.5^{\circ}$ 3 standard reflections every 97 reflections intensity decay: none

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0491P)^{2} + 5.6815P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{\AA}^{-3} + \Delta\rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C12-H12A\cdots O12^{iii}\\ C18-H18\cdots O11^{iv} \end{array}$	0.99 0.95	2.60 2.51	3.592 (2) 3.147 (2)	178 124
Symmetry codes: (iii) $-x$	$+\frac{4}{3}, -y - \frac{1}{3}, -y$	$z + \frac{2}{3}$; (iv) $x - \frac{1}{2}$	$y - \frac{1}{3}, x - \frac{2}{3}, -z +$	1 <u>3</u> .

H atoms were placed at calculated positions and refined using a riding model. The constrained distances were 0.95 and 0.99 Å for aryl and methylene, respectively. They were refined with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

We thank the Leverhulme Foundation and Unilever R&D for support and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.

Figure 4

C18-H18···O11^{iv} and symmetry-related hydrogen-bonds (shown dashed). [Symmetry code: (iv) $x - y - \frac{1}{3}$, $x - \frac{2}{3}$, $\frac{1}{3} - z$.]

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput.

Sci. **36**, 746–749.

Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). *Acta Cryst.* C61, 075–077.

McKee, V., Nelson, J. & Town, R. M. (2003). Chem. Soc. Rev. 32, 309-325.

Nelson, J., McKee, V. & Morgan, G. (1998). Prog. Inorg. Chem. 47, 167–316.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.